
DAQInterface

John Freeman
10 January 2018

Jan-10-2018 John Freeman2

DAQInterface:

● A lightweight run control system experiments can use to control their
artdaq-based DAQ software

● Performs useful behind-the-scenes work which allows users to interact with
artdaq-based DAQ systems at a high level

● Overloaded term: “DAQInterface” can refer both to the executable run at
the commandline, as well as the package which it's a part of, and which is
technically called “artdaq-daqinterface”

● Covered in this talk: what problems DAQInterface tries to solve, what it
actually does when it's issued transitions, how its standard behavior is
modif ied for JCOP control, and how to conf igure its behavior

Jan-10-2018 John Freeman3

What the artdaq Package Provides

● Different process types (BoardReaders, EventBuilders, etc.) which play
different roles in a DAQ system

● Each individual process has its own state machine, and can be issued
transitions externally

● “Booted” � init � “Ready” � start � “Running” � stop � “Ready”
● The “Booted” state: a process exists
● The init transition: requires a FHiCL document as argument

● For BoardReaders specif ically, the fragment generator constructor is
called during this transition

● The “Ready” state: processes are conf igured but not yet taking data
● The start transition: requires a run # as argument
● Only a subset of the transitions are allowed for any given state

Jan-10-2018 John Freeman4

What the artdaq Package Does Not Provide

● A built-in ability to perform necessary
bookkeeping on the FHiCL code. The
snippet on this slide is taken from an
EventBuilder in a system with 2
BoardReaders – if there were 3, a
new table “s2” would need to be
added, and the host_map table inside
all three source tables would need to
be modif ied. This would be tedious
and error-prone to perform manually.

● Automatic saving of information (e.g.,
the complex FHiCL documents used
to initialize the artdaq processes) for
posterity

Jan-10-2018 John Freeman5

Enter DAQInterface

● DAQInterface will perform this FHiCL bookkeeping automatically once it's
told how many of each process type is desired, and what hosts they're to
run on

● It saves information about each run – what dune-artdaq (in our case)
installation was used, where the logf iles for the run were located, what the
FHiCL documents used were, etc.

● It can also perform process management “in batch” - rather than you
needing to worry about where all the artdaq processes are, what ports
they're listening on, and whether the transition you sent each one went
through successfully, you just send it a transition and it takes care of the
details

Jan-10-2018 John Freeman6

Just a Bit of Background

● DAQInterface was originally developed at 35ton as a component controlled
via Erik Blaufuss's run control

● After 35ton ended, I added in some of Erik's code and repurposed
DAQInterface to be an experiment-independent, standalone run control tool

● Focus on being lightweight (few dependencies- it's pretty much just a
Python program), easily ported to new systems and robust

● Command-line rather than a GUI, with all the pros and cons that implies:
● Pro: don't have to deal with windowing over slow connections or in

terminals which don't support it, everything the user sees is loggable,
scripts can be used to run it in batch mode

● Con: it's harder to type commands that hit buttons, especially if user isn't
aware of “Ctrl-r”; information about the state of the system has to be
requested at the command line rather than always visible

● More?

Jan-10-2018 John Freeman7

Launching DAQInterface

● Instructions can be reached on the Twiki at “artdaq � Basic Operation” and
“Run Control � Command Line Interface for Experts”

● When you launch DAQInterface, you'll either be informed that it launched
successfully, or that there was already an instance running

● If there IS an instance running, you can use it, but be aware of the
following:
● DAQInterface output will not appear in stdout, so you'll have to look at its

logf ile for its output,
/log/daqinterface_np04daq/DAQInterface_port5590.log

● You'll also want to check that logf ile to make sure it's not being actively
used!

● listdaqinterfaces.sh can tell you whether there's already DAQInterface at
port 5590. “kill_daqinterface_on_port.sh 5590” will kill it.

Jan-10-2018 John Freeman8

Launching DAQInterface

● Instructions can be reached on the Twiki at “artdaq � Basic Operation” and
“Run Control � Command Line Interface for Experts”

● When you launch DAQInterface, you'll either be informed that it launched
successfully, or that there was already an instance running

● If there IS an instance running, you can use it, but be aware of the
following:
● DAQInterface output will not appear in stdout, so you'll have to look at its

logf ile for its output,
/log/daqinterface_np04daq/DAQInterface_port5590.log

● You'll also want to check that logf ile to make sure it's not being actively
used!

● listdaqinterfaces.sh can tell you whether there's already DAQInterface at
port 5590. “kill_daqinterface_on_port.sh 5590” will kill it.

Jan-10-2018 John Freeman9

The Boot Transition: Launching artdaq Processes, Pt. 1
● Tell DAQInterface what BoardReaders you want to use via

setdaqcomps.sh – e.g., “setdaqcomps.sh timing rce00 ssp00”
● Use listdaqcomps.sh to see the available components
● ...BUT, be aware that I use “available” loosely. If, e.g., an instance of

DAQInterface controlled by JCOP is in use and is using the timing
BoardReader, there will likely be problems

● Relevant to the above point,
/log/daqinterface_np04daq/DAQInterface_port5570.log contains the output
of the JCOP-controlled DAQInterface – look for “Selected DAQ comps”

Jan-10-2018 John Freeman10

The Boot Transition: Launching artdaq Processes, Pt. 2

● As an argument to the DAQInterface Boot transition, we provide the name
of a f ile which tells DAQInterface how to set up the artdaq environment and
what non-BoardReader processes to launch

Jan-10-2018 John Freeman11

The Boot Transition: Launching artdaq Processes, Pt. 3

● Possible failure modes include the following:
● The name of the boot f ile provided doesn't exist

● DAQInterface doesn't see the info it expects in the boot f ile

● The artdaq setup script returns nonzero when sourced

● A sluggish network causes the boot to take a very long time

● Some/all of the requested artdaq process ports are already being used

● If none of the above happens, we're now in the “Booted” state

Jan-10-2018 John Freeman12

The Conf ig Transition: init'ing artdaq Processes, Pt. 1

● From the “Booted” state, we issue the conf ig transition. It takes the name of
a conf iguration as its argument

● This conf iguration is retrieved from Gennadiy's database
● The relevant FHiCL documents then have bookkeeping performed on them

based on the #'s of requested artdaq process types as described earlier
● The FHiCL documents, after bookkeeping, are saved in the

/tmp/run_record_attempted_np04daq directory, clobbering the previous
version of that directory. This is useful for troubleshooting in the event of a
failure.

● If things go off without a hitch, DAQInterface will send the init transition to
the artdaq processes, using the appropriate FHiCL document as the
argument to init for each process

Jan-10-2018 John Freeman13

The Conf ig Transition: init'ing artdaq Processes, Pt. 2

● Possible failure modes include the following:
● The named conf ig doesn't exist

● A problem occurs in a fragment generator's constructor – e.g., “Failed to
parse XML response” in the TpcRceReceiver if there's a connectivity
issue

● More? Other common ones on Protodune?

Jan-10-2018 John Freeman14

A Slight Digression

● When DAQInterface is in charge of the artdaq processes, it continually
polls the artdaq processes on a separate thread to (A) make sure they
exist, and (B) make sure that when sent the “status” query command, that
they don't return “Error”

● If either of these occur, DAQInterface will no longer accept commands and
will instead print an error message, attempt to cleanly wind down the artdaq
processes by sending them the stop and shutdown transitions, kill the
artdaq processes and set itself back into the “Stopped” state

● Note that when a fragment generator throws an uncaught exception, the
BoardReader in which it's embedded will respond with “Error” when sent
the status query

Jan-10-2018 John Freeman15

The Start Transition: Data Starts to Flow
● First, DAQInterface saves information on the run, both to the local

f ilesystem's run records directory /nfs/sw/artdaq/run_records and to the
archive database:
● The FHiCL documents used to init the artdaq processes

● The boot f ile

● A metadata f ile, which contains info on the git commit hashes of the
various packages used, the conf ig used, the components used, as well
as where the logf iles from the artdaq processes are located

● DAQInterface also creates softlinks to the artdaq logf iles so it's easy to f ind
them – e.g., np04-srv-012:/log/boardreader/run557-timing.log

● If in charge of the artdaq processes, DAQInterface sends the start
transition to them in downstream-to-upstream order and conf irms that they
all entered the running state before it puts itself in the running state.

Jan-10-2018 John Freeman16

A Sample Metadata File
● This is

/nfs/sw/artdaq/run_recor
ds/557/metadata.txt on
the local f ilesystem,
corresponding to a run
taken on Tuesday:

Jan-10-2018 John Freeman17

The Stop Transition

● DAQInterface will add the run start time, run stop time, and (attempt) the
total # of events (if deducible from the logf ile) to the metadata.txt f ile

● It will also issue the stop transition to the individual artdaq processes, in the
reverse order it sent them on the start transition

● Finally it puts itself in the “ready” state

Jan-10-2018 John Freeman18

The Terminate Transition

● DAQInterface will send the not-yet-mentioned shutdown transition to the
artdaq processes

● Then it kills them
● It's now in the “Stopped” state. Aside from a list of components (which can

be clobbered with a fresh setdaqcomps.sh command) it's now the same as
if it had just been launched

Jan-10-2018 John Freeman19

When JCOP Takes Over, Pt. 1
● To 0th order, JCOP takes over the role a human would at the command line

● Button pressed create strings which are executed within a shell

● The Bourne Shell rather than the Bash Shell, but we've f igured out ways
around this

● DAQInterface as controlled by JCOP relinquishes control of the artdaq
processes – polling the processes and sending them transitions is no
longer DAQInterface's job
● DAQInterface's own transitions become much quicker

● Its state becomes less interesting, as it doesn't tell you anything about
the artdaq processes' state

● From e-log back in the autumn, during a messy shutdown it was noted
“DAQInterface thinks we're stopped” - DAQInterface doesn't think we're
stopped, it thinks IT'S stopped- and that just means it got the transition

Jan-10-2018 John Freeman20

When JCOP Takes Over, Pt. 2

● However, DAQInterface still is in charge of launching the processes on
boot and killing them on terminate

● Otherwise, from a JCOP perspective it primarily exists to provide fully-
prepared FHiCL documents for the init transition and to save info about the
run

● The DAQInterface controlled by JCOP listens on port 5570; consequently
its logf ile is /log/daqinterface_np04daq/daqinterface_port5570.log rather
than /log/daqinterface_np04daq/daqinterface_port5590.log

Jan-10-2018 John Freeman21

Advanced Usage: the Settings File

● Read in when DAQInterface is launched
● Contains not-often-changed aspects of DAQInterface's behavior, including:

● The transition timeouts on the different artdaq process types

● The location on the f ilesystem of the run record, and which package
commit hashes to save in it

● The location on the f ilesystem of the logf iles

● Whether to use MessageViewer

● Whether DAQInterface is in charge of sending the processes transitions

● What order the different components should receive transitions

● This f ile should rarely be touched, and then only with an expert's
permission

Jan-10-2018 John Freeman22

The Settings File for JCOP-Controlled DAQInterface

● Note that some tweaks may need to be made when switching to artdaq v3

Jan-10-2018 John Freeman23

Advanced Usage: the Components File

● This tells DAQInterface where to launch BoardReaders based on the
fragment generator they're using

● Should be changed typically only if hardware gets moved
● Although tweaks are necessary if ports are already getting used
● A sample snippet from the f ile:

Jan-10-2018 John Freeman24

Advanced Usage: MessageFacility.fcl

● /nfs/sw/artdaq/DAQInterface/MessageFacility.fcl - the f ilename is slightly
misleading, in that users can alter the FHiCL to control not just output
messages to MessageFacility, but also to the logf iles

● Limit repeated messages, def ine whether or not debug messages should
appear, and more sophisticated usages Ron covers

● It should probably be announced in the e-log if this f ile is edited

Jan-10-2018 John Freeman25

The Bottom Drawer

● It's possible to kill DAQInterface while artdaq processes are running,
effectively making them no longer possible to control

● Related to the above, if DAQInterface is sent the boot transition and artdaq
processes are already running on requested ports, it'll issue a complaint, wipe
them out, and return to the stopped state. At this point, the next boot transition
will succeed.

● It's important to maintain a distinction between the ports used the boot f ile for
the commandline DAQInterface vs. the boot f ile for the JCOP-controlled
DAQInterface

● show_recent_runs.sh <N> # summarizes the <N> most recent runs
● show_warnings_for_run.sh <run number> | less # Shows warnings + errors

Jan-10-2018 John Freeman26

Conclusions

● DAQInterface is a simple, portable, lightweight run control system which can
be operated standalone or embedded within a larger run control framework

● It specializes in bookkeeping FHiCL documents based on the dataf low, saving
info about the run, and (optionally) sending transitions to and monitoring the
artdaq processes

● As the JCOP-controlled DAQInterface listens on port 5570 and the command-
line DAQInterface listens on port 5590, they don't collide, though it's
necessary to take care that artdaq ports are different in the boot f iles, and that
the same hardware component isn't run on

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

